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Adoption of the "best" available opacities, of hypothetical

additional neutrino sources, or of a central black hole in theoretical

models for the sun only increases the discrepancy with the null

37
result of Davis's C1 experiment to detect solar neutrinos. No

thermal instabilities in any of the solar models have yet been

found.
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Following the early work of Marx and Menyhard
1

and of Bahcall,

Fowler, Iben, and Sears, many investigators have made predictions

of the solar neutrino spectrum based on models of the solar interior

(see Iben3 and Bahcall and Ulrich
4

and references therein). All the

models that use "standard" assumptions predict approximately the

same neutrino spectrum, and variations of these standard parameters

are found to introduce relatively minor changes in the predicted

neutrino fluxes - at most changes of - 2. The current effort by

5 37
Davis and his coworkers to detect solar neutrinos via the C1

experiment has most recently yielded a capture rate of (0. 3 0. 6)

-36 -1 37 8
X 10 s per Cl atom, corresponding to a B neutrino flux at

the earth of (0. 2 0. 4) x 106 cm s above the energy threshold of

the detector. (The rather high detector threshold means that most

of the captured neutrinos are expected to be those from the Hare 8B

branch in the pp chain. ) A reasonable upper limit on the observed

flux can be quoted as log 1 0 5(8 B)< 5. 8. A recent paper by Ezer and

7 8
Cameron (hereinafter called Paper I) predicts a typical B neutrino

flux at the earth of log 10(( B) = 6. 59. The discrepancy between obser-

vation and theoretical prediction has mushroomed with the increased

sensitivity of Davis's experiment.

In the present Letter, we examine four significant quantities

that affect the internal structure of the sun. Basically, we are here
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interested in factors that will reduce the temperature near the sun's

center. Since the 8B neutrino loss rate is approximately propor-

tional to T
1 3

while the rate of production of usable energy goes like

T , a small change in T near the center can significantly affect

0( B) while leaving the photon luminosity L essentially unchanged.

Opacity. It is already well known3 ' 4 that, in theoretical

models for the sun, 0( B) increases with the opacity (x), the initial

abundance ratio of helium to hydrogen (Y/Xi, and the initial

abundance ratio of metals to hydrogen (Z/X). Our purpose in

reconsidering the opacity is to set improved upper and lower limits

on 0( B) by adopting more extreme assumptions about x and by

calculating in detail (1) the pre-main-sequence stages of evolution,

starting from the threshold of energy stability, and (2) the approach

to equilibrium of the nuclear reactions in the various branches of

the pp chain and CNO bi-cycle.

In practice, a reasonable guess is made of the input parameters

Y/X, Z/X, anda (the ratio of convective mixing length to pressure

scale height). A sequence of stellar models for 1 M< is then evolved

up to the present age of the sun (taken to be 4. 5 x 109 years), at

which point the model ought to have the observed luminosity and

radius of the sun; if it does not, revision is made of the three input

parameters until agreement is achieved. A loose, additional con-
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straint is provided by the observed abundances of chemical elements

in the solar atmosphere, in solar cosmic rays, and in chrondritic

meteorites, which seem to require Y/X 0. 2 - 0. 5 and Z/X 

7,80. 02 - 0. 03. The luminosity is, in general, found to be most

sensitive to Y/X and Z/X, while the radius can usually be adjusted

by changing a. In the models reported in this Letter, we have

adopted (unless otherwise specified) the same basic input physics

and method of solution as in Paper I (note that the pep reaction has

been ignored). The model for the present sun calculated in Paper

I will be called the "standard" solar model.

The opacities adopted in Paper I were derived from the

Cox-Stewart opacity code for the continuous opacity, and augmented

by an approximate correction factor for line absorption, by com-

paring (1) earlier calculations in which lines were explicitly

included9 and (2) Watson's calculations of line absorption due to

auto-ionizing states. However, the electron-scattering opacity

(which contributes about one third of the total opacity at the sun's

center) was not, and will not be here, reduced by -30 per cent to

11
account for electron correlations.

An alternative set of continuous and line opacities is the set

computed by Carson, Mayers, and Stibbs, who employed the

Thomas-Fermi model of the atom instead of the hydrogenic
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approximation used by Cox and Stewart. In order to make use of

these opacities, we have simply multiplied the opacities adopted

in Paper I by an approximate factor max 1, (3 - 16 - log T1)3.

Since Carson et al. did not consider temperatures lower than 10
6

°K,

the correction factor has been merely assumed to drop off linearly

from a maximum value of 3 at 10
6

°K to a value of unity at 10 4 °K,

on the grounds that (1) at 10 4 °K, the hydrogenic approximation is

satisfactory for the (partially ionized) metals and (2) between 10
4

and 10
6

°K, the relevant part of the solar interior is the small,

and mostly adiabatic, outer convection zone (which has little effect

on the interior structure). The correction factor probably maxi-

mizes the opacities in the solar core if we note that Nikiforov and

Uvarov also adopted the Thomas-Fermi atomic model but found

opacities closer to those of Cox and Stewart, and that Carson et al.

assumed a relative abundance of the important contributor neon

which is -10 times higher than current estimates for the sun.

(It should be noted, however, that the relative abundances of iron, argon,

silicon, etc. are also uncertain, as Watson, Bahcall, and others

have emphasized. )

Minimization of the core opacities (except for our omission

of electron correlations) is achieved by assuming a pure hydrogen-

helium mixture below the photosphere. Physically, this situation
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is unrealistic because the fully convective Hayashi phase of the

early protosun is found to completely homogenize the interior

composition (if it is not already homogeneous). But the example

is useful as a limiting case.

Results of our calculations for the sun are given in Table I.

-2 -1
TABLE I. Solar neutrino fluxes X (cm s ) at the earth

Case Standard Large Small Black Black
Opacity Opacity Hole Hole

X 0.762 0.625 0.870 0.762 0.770
Z 0. 015 0.015 0. 000 0. 015 0. 015

M /M ... ... ... 0. 001 0.004
a 1.3 . 1 <0.1 1.3 1.1 <0.1 1.3 1.3
X 0.43 0.29 0.56 0.32 0.26
TC(10 6 °K) 15.2 16.9 14.2 15.4 15.8

~p(g cm- 3 ) 147 149 129 223 323
log1

0
0(pp) 10.82 10.77 10.84 10.82 10.82

log,1 0 (7 Be) 9.50 9.88 9. 18 9 51 9.55

log1 0 0( 8 B) 6.59 7.49 6.04 6.72 6.86
log1 0 ( 1 3 N) 8.49 9,16 ... 8.74 8.62
log1 0 0(1 5 O) 8.38 9.14 ... 8.69 8.54

8.5

With our adopted departures from the standard model, 0( B) is

increased by a factor of -8 for the increased opacity, but reduced

by a factor of -4 for zero metals abundance. This reduction of

0(8B) is not significantly smaller than the corresponding reduction

factor of 6 found by Bahcall and Ulrich. We should emphasize

that ( 8B) is very sensitive to the details of calculating the
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evolutionary sequences (e.g., mass zoning, time steps, convergence

criteria, and central convection). All three models for the present

sun are found to possess tiny convective cores containing about 0. 1

per cent of the total mass.

Central black hole. The sun may contain a relatively mas-

sive black hole at its center if interstellar space is populated by

gravitationally collapsed objects which act as condensation centers

14
for star formation. It will here be assumed that the radius of

such an object with mass M is equal to its Schwarzschild radius,

-2
r S = 2GM c ; therefore, its gravitational attraction becomes

c

nearly Newtonian beyond a radius of - 1Or S = 10 (M /M ) solar

units. Since the matter density at this radius in a solar model

containing a black hole is expected to be of the same order of mag-

nitude as the central density of a solar model without a central

black hole, the mass contained between rS and 1Or
S

will be only

-11
-10 M1 , which is negligible. Hence we can employ the ordi-

nary (nonrelativistic) equations of stellar structure if we replace

the ordinary central boundary conditions by: M for the mass, and

"effective" values of P and T for the central pressure and tem-
c c

perature (to be evaluated just outside 10rs). We shall ignore

questions of the origin of the black hole, of its most likely mass,

and of its rate of accretion of surrounding matter, and only evaluate
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the effect of its supposed presence on 0( B).

Results of calculations using the input physics of Paper I

and two values of M /M are shown in Table I. (We have found
c ®

that a choice of M /M = 0. 010, and, presumably, larger values,
c 0

causes the hydrogen to burn up too rapidly to account for the present

sun.) Since the "central" gravity is higher for models with a black

hole, the core pressures and densities are raised, and this in-

creases the opacity, the temperature gradient, and the central

temperature. It therefore follows that ( 8B) increases. An interest-

ing sidelight is that the steep density gradient near the center causes

the innermost regions to become radiative very early during the

pre-main-sequence contraction.

Thermal instability. A fluctuation in the central temperature

of the sun will cause an almost immediate fluctuation in the neutrino

fluxes received at the earth. But since photons diffuse slowly out

of the core, the concomitant fluctuation in nuclear energy generation

will cause simply a delayed and damped perturbation of the surface

luminosity. Paleontological evidence, at least, rules out any

large (>25 per cent) variations of solar luminosity over the past

9 16
3 x 109 years. The lowest modes of radial oscillation in the sun

are always found to be highly stable (periods of - 1 hour, although

damping times are of - months). Wolff has suggested, however,
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that major solar flares may excite the sun to high modes of oscil-

lation. But, if so, the induced central temperature fluctuation

18 19
would probably be extremely small. Sheldon's identification

of the 11-year solar cycle with interior hydromagnetic instability

does not explain why the core energy source should be pulsing, nor

do Shaviv and Salpeter and Fowler try to give a reason for why

the central temperature may have reversed its normal evolutionary

increase for the past 10 - 10 years (thermal diffusion time in the

sun), although Fowler hints that the onset of massive convection

throughout the sun may have recently taken place for some unex-

plained reason.

If, however, the sun's nuclear-energy producing region were

(cyclically) thermally unstable because of the sensitive temperature

dependence of the nuclear reaction rates, this region could be in a

temporary temperature minimum at the present time. Although

nondegenerate nuclear-burning cores are usually regarded as

21
being thermally stable, it has nevertheless seemed worthwhile

to evolve a sequence of solar models using time steps smaller

than the e-folding time of thermonuclear runaway, - 10 years.

No instability was found in these calculations. Similar results

have been obtained by more thorough, but linearized, calculations

performed by Schwarzschild
2 3

and by Aizenman and Perdang. 24
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Apart from the foregoing mechanisms, there remain possible

dynamical perturbations induced by convection or rotation in the

sun.

Additional neutrino sources. If the sun were emitting co-

pious neutrinos derived from a direct electron-neutrino inter-

action, the central temperature would be higher than otherwise

expected because (1) nuclear energy production must balance both

photon and neutrino losses and (2) the speed-up in the rate of evo-

lution would cause the sun to be more highly evolved at its present

age of 4. 5 x 109 years. In that case, X ( B) would be larger al-

though the copious keV thermal neutrino flux would not be detected

in Davis's experiment.

We conclude that the only possibility for reducing 0( B) in

the kinds of solar models considered here is a thermal instability

of some sort, but we can suggest no plausible mechanism.
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